domingo, 2 de agosto de 2020


TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.




FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

X
 [ESTADO QUÂNTICO]



relação de Planck–Einstein[1][2][3] é também conhecida como relação de Einstein,[1][4][5] ou como relação de frequência-energia de Planck,[6] relação de Planck,[7] e equação de Planck.[8] A expressão fórmula de Planck[9] também pertence a esta lista, mas muitas vezes se refere à lei de Planck[10][11] Esses vários epônimos são usados de maneira esporádica. Referem-se a uma fórmula integral da mecânica quântica, que estabelece que a energia de um fóton E é proporcional à sua frequênciaν:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


constante de proporcionalidadeh, é conhecida como constante de Planck. Existem várias formas equivalentes da relação.
A relação explica a natureza quantizada da luz, e desempenha um papel decisivo no entendimento de fenômenos como o efeito fotoelétrico, e a lei de Planck da radiação de corpo negro.
Mais detalhes em: Postulado de Planck


Formas espectrais[editar | editar código-fonte]

A luz pode ser caracterizada usando várias quantidades espectrais, como a frequência νcomprimento de onda λnúmero de onda , e seus equivalentes angulares (frequência angular ωcomprimento de onda angular y, e número de onda angular k). Essas grandezas se relacionam pela equação
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


então a relação de Planck pode ter as seguintes formas "padrão"
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


assim como as seguintes formas 'angulares',
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


As formas padrão fazem uso da constante de Planck h. As formas angulares fazem uso da constante reduzida de Planck ħ = h. Aqui, c é a velocidade da luz.

Relação de de Broglie[editar | editar código-fonte]

A relação de de Broglie,[5][12][13] também conhecida como relação momento–comprimento de onda de de Broglie,[6] generaliza a relação de Planck para ondas de matériaLouis de Broglie argumentou que se as partículas possuem natureza de onda, a relação E =  também se aplicaria para elas, e postulou que as partículas teriam um comprimento de onda igual a λ = hp. Combinando o postulado de de Broglie com a relação de Planck–Einstein resulta em
 ou
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


A relação de de Broglie também é algumas vezes encontrada na forma vetorial
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


onde p é o vetor momento, e k é o vetor de onda angular.

Condição de frequência de Bohr[editar | editar código-fonte]

A condição de frequência de Bohr estabelece que a frequência de um fóton absorvido ou emitido durante uma transição eletrônica relaciona-se à diferença de energia (ΔE) entre os dois níveis de energia envolvidos na transição:[14]
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Isso é uma consequência direta da relação de Planck–Einstein.



Lei de Planck para radiação de corpo negro exprime a radiância espectral em função do comprimento de onda e da temperatura do corpo negro.
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


A tabela seguinte descreve as variáveis e unidades utilizadas:
VariávelDescriçãoUnidade
radiância espectralJ•s−1•m−2•sr−1•Hz−1
frequênciahertz
temperatura do corpo negrokelvin
constante de Planckjoule / hertz
velocidade da luz no vácuometros / segundo
número de Eulersem dimensão
constante de Boltzmannjoule / kelvin
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


O comprimento de onda está relacionado a frequência como (supondo propagação de uma onda no vácuo):
Pode-se escrever a Lei de Planck em termos de energia espectral:
A energia espectral também pode ser expressa como função do comprimento de onda:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Max Planck produziu esta lei em 1900 e a publicou em 1901, na tentativa de melhorar a expressão proposta por Wilhelm Wien que adequou dados experimentais para comprimentos de onda curtos desviados para comprimentos de onda maiores. Ele estabeleceu que a Lei de Planck adequava-se para todos os comprimentos de onda extraordinariamente bem. Ao deduzir esta lei, ele considerou a possibilidade da distribuição de energia eletromagnética sobre os diferentes modos de oscilação de carga na matéria. A Lei de Planck nasceu quando ele assumiu que a energia destas oscilações foi limitada para múltiplos inteiros da energia fundamental E, proporcional à freqüência de oscilação  [1]:
 .
Planck assumiu a essa quantização, cinco anos depois de Albert Einstein ter sugerido a existência de fótons como um meio de explicar o efeito fotoelétrico. Planck acreditava que a quantização aplicava-se apenas a pequenas oscilações em paredes com cavidades (que hoje conhecemos como átomos), e não assumindo as propriedades de propagação da Luz em pacotes discretos de energia. Além disto, Planck não atribuiu nenhum significado físico a esta suposição, mas não acreditava que fosse apenas um resultado matemático que possibilitou uma expressão para o espectro emitido pelo corpo negro a partir de dados experimentais dos comprimentos de onda. Com isto Planck pôde resolver o problema da catástrofe do ultravioleta encontrada por Rayleigh e Jeans que fazia a radiança tender ao infinito quando o comprimento de onda aproximava-se de zero, o que experimentalmente não é observado. É importante observar também que para a região do visível a fórmula de Planck pode ser aplicada pela aproximação de Wien e da mesma forma para temperaturas maiores e maiores comprimentos de onda podemos ter também a aproximação dada por Rayleigh e Jeans.



Energia do fotão (pt) ou energia do fóton (pt-BR) é a energia carregada por um único fóton. A quantidade de energia está diretamente relacionada à frequência e ao comprimento de onda eletromagnética do fóton. Quanto maior for a frequência do fóton, maior a sua energia. Da mesma forma, quanto maior for o comprimento de onda do fóton, menor a sua energia.
A energia do fóton é uma função somente do comprimento de onda. Outros fatores, como intensidade da radiação, não afetam a energia do fóton. Em outras palavras, dois fótons de luz com a mesma cor e, portanto, o mesmo comprimento de onda, terão a mesma energia do fóton, mesmo se um for emitido por uma vela de cera e o outro for emitido pelo Sol.
A energia do fóton pode ser representada por qualquer unidade de energia. Umas das unidades mais comuns para denotar a energia do fóton é elétron-volt (eV) e joule (bem como seus múltiplos, como microjoule). Como um joule é igual a 6,24 × 1018 eV, as unidades maiores podem ser mais úteis para denotar a energia de fótons com frequências e energias mais altas, como o raio gama, ao contrário dos fótons de menor energia, como os da região do espectro eletromagnético de radiofrequência.
Se os fótons, de fato, não possuem massa, a energia do fóton não seria relacionada à massa através da equivalência E = mc2. Os únicos dois tipos de tais partículas sem massa observados são os fótons e os glúons.[1] Entretanto, o postulado de que os fótons não possuem massa é baseado na crise que resulta de outras teorias em mecânica quântica. Para que outras teorias, como a invariância de gauge e a chamada "renormalização" sobrevivam sem considerável revisão, os fótons devem permanecer sem massa no domínio das atuais equações.[2] A alegação é contestada em outros meios.[3] Diz-se que fótons possuem massa relativística (isto é, massa resultante do movimento de um corpo material em relação a outro). Além disso, algumas hipóteses propõem que toda massa ou "massa de repouso" pode ser composta de massa relativística acumulada, secundária ao movimento, uma vez que nenhum corpo material esteja ou possa estar em "repouso" em relação a todos os campos. Nessa hipótese, assim como o movimento se torna zero, a massa também se torna zero. Por outro lado, os fótons possuem movimento e energia variável em relação à frequência e ao comprimento de onda, sugerindo que várias formas do foton têm, cada uma, equivalência de massa diferente. Assim, a equação "E = mc2" mostraria que a massa e o movimento são conceitos indissociáveis e e fundamentalmente substituíveis para toda a matéria.[4]


Fórmula[editar | editar código-fonte]

equação para a energia do fóton[5] é
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Onde E é a energia do fóton, h é a constante de Planckc é a velocidade da luz no vácuo e λ é o comprimento de onda do fóton. Como h e c são ambos constantes, a energia do fóton varia diretamente em relação ao comprimento de onda λ.
Para encontrar a energia do fóton em eV, usando o comprimento de onda em micrômetros, a equação é aproximadamente
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Portanto, a energia do fóton de comprimento de onda de 1 μm, próximo à da radiação infravermelho, é aproximadamente 1,2398 eV.
Como , onde f é a frequência, a equação da energia pode ser simplificada para
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Esta equação é conhecida como a relação de Planck-Einstein. Substituindo h por seu valor em J⋅s e f por seu valor em hertz resulta na energia do fóton em joules. Portanto, a energia do fóton à frequência de 1 Hz é 6,62606957×10−34 joules ou 4,135667516×10−15 eV.
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


é usada onde h é a constante de Planck e a letra grega ν (ni) é a frequência do fóton.[6]



proporcionalidade, para a matemática, a química e a física, é a mais simples e comum relação entre grandezas. A proporcionalidade direta é um conceito matemático amplamente difundido na população leiga pois é bastante útil e de fácil resolução através da "regra de três". Quando existe proporcionalidade direta, a razão (divisão) entre os correspondentes valores das duas grandezas relacionadas é uma constante, e a esta constante dá-se o nome de constante de proporcionalidade.


Definição[editar | editar código-fonte]

Em regra, a proporcionalidade é uma relação binária que pode ocorrer numa dupla de funções reais de mesmo domínio. Uma função é proporcional a outra se e somente se existe(m) alguma(s) constante(s) real(is) – denominada(s) constante(s) de proporcionalidade – que igual(em) cada razão entre as valorações. Então, dados um conjunto  e duas funções , temos que:  é proporcional a  se e só se existe alguma constante real  tal que, para todo  ao longo de  Isso é
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Isso vale para os números reais; álgebras exóticas não serão abordadas nesse artigo.
Sendo verdadeira a proporcionalidade, existirão exatamente um ou dois valores possíveis para .
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


E mantêm a propriedade de serem inversas multiplicativas uma da outra.

Propriedades[editar | editar código-fonte]

Algumas propriedades da proporcionalidade serão enunciadas e provadas abaixo:

Equivalente[editar | editar código-fonte]

A relação de proporcionalidade é reflexivacomutativa (ou "simétrica") e transitiva, portanto, é uma relação de equivalência.

Reflexiva[editar | editar código-fonte]

Toda função é proporcional a si mesma.
Provada a partir da definição:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Este é o único caso em que existe uma só constante real de proporcionalidade.



No âmbito científico um espectro é uma representação das amplitudes ou intensidades - o que geralmente traduz-se por energia - dos componentes ondulatórios de um sistema quando discriminadas uma das outras em função de suas respectivas frequências (ou comprimentos de onda). Em um espectro as componentes ondulatórias (fases) distinguem-se fisicamente umas das outras não por suas naturezas mas sim pelas suas frequências, portanto. O exemplo típico é o espectro visível.
Caso o diagrama expresse a frequência associada a cada componente ondulatória do sistema como função do respectivo comprimento de onda e não a intensidade como função da frequência tem-se o que se denomina em física por relação de dispersão. Relações de dispersão e espectros, apesar de distintos, encontram-se relacionados, visto que, entre outras observações, as intensidades em um espectro podem ser descritas, via relação de dispersão, tanto em função das frequências como em função dos respectivos comprimentos de onda a elas associados.
O conceito de espectro também aplica-se à dinâmica de um feixe material em virtude da dualidade partícula-onda. Associado à partícula material em movimento há uma onda de matéria cuja frequência mostra-se diretamente proporcional à sua energia cinética. Relações estabelecidas em função das energias cinéticas são em essência relações estabelecidas em função das frequências das ondas de matéria associadas; e assim também constituem exemplos de espectros. Como exemplo têm-se os espectros "XPS", obtidos via processo de espectroscopia de fotoelétrons excitados por raios X.
Um equipamento capaz de analisar e gerar o espectro de um sinal temporalmente complexo contudo "bem comportado"[nota 1] é denominado espectrômetro. Se acrescido de funcionalidade que lhe permita gerar um registro fotográfico do espectro exibido, o equipamento denomina-se espectrógrafo.[nota 2] Em termos teóricos, a ferramenta matemática que extrai de um sinal no domínio do tempo cada uma das componentes espectrais que, juntas, o caracterizam no domínio da frequência, é a transformada de Fourier. O sinal também pode ser integralmente reescrito no domínio tempo via suas componentes no domínio da frequência através da série de Fourier.

Í

Exemplos[editar | editar código-fonte]

Espectro de massa[editar | editar código-fonte]

Um espectro de massa.
Um exemplo típico de um espectrômetro é um espectrômetro de massa. Valendo-se entre outros da propriedade elétricas associadas às partículas e aos núcleos atômicos, uma dada mistura de isótopos de um elemento químico ou mesmo elementos químicos distintos é inicialmente vaporizada, ionizada, colimada em um feixe de partículas feito mover-se à uma velocidade pré-estabelecida, e então dirigida para uma região onde campos magnéticos fazem-nas descrever trajetórias semicirculares com raios que dependem explicitamente de seus momentos e, por conseguinte, explicitamente de suas massas ou energias cinéticas. Sensores ao final possibilitam a construção de um gráfico discriminando a percentagem estequiométrica em massa de cada componente na mistura inicial em função da massa - ou por vezes, devido a detalhes técnicos, em função da razão carga / massa - do respectivo componente.
A denominação "espectro" se justifica aqui em função da dualidade partícula-ondaDe Broglie trouxe à luz o fato de que partículas massivas têm comportamento ondulatório, onde seus comprimento de onda encontram-se relacionados aos seus momentos, ao passo que, sob a mesma ótica, Max Planck mostrou que as energias das partículas quânticas em movimento encontram-se relacionadas às frequências das ondas de matéria à estas associadas. Separar as partículas por massa traduz-se de forma prática em tal sistema em discriminá-las através de suas energias cinéticas, ou, via dualidade partícula-onda, decompor a massa total da amostra em função das frequências associadas a seus respectivos elementos constituintes quando em movimento. Via relação de dispersão, o mesmo raciocínio pode ser feito com base nos momentos, ou seja, com base nos associados comprimentos de onda.

Espectro eletromagnético e óptico[editar | editar código-fonte]

O exemplo mais expressivo de um espectro é o padrão obtido quando as radiações electromagnéticas são primeiro espacialmente discriminadas em função de suas frequências - mediante algum fenômeno físico explicitamente dependente da última grandeza, a exemplo o que ocorre quando as ondas transitam de um meio de propagação para outro onde a relação de dispersão mostre-se distinta da primeira (refração) - e são então devidamente projetadas sobre filme adequadamente sensível às intensidades destas. Se a radiação eletromagnética encontra-se na faixa do visível, as diversas frequências eletromagnéticas traduzem-se em "cores" visualmente observáveis, e para o caso onde todas as componentes na faixa de frequências em questão estejam significativamente presentes, tem-se a impressão de um arco-iris.
A exemplo, as radiações solares resultam em um espectro de bandas coloridas quando a luz branca passa através de um prisma ou rede de difração. As cores deste espectro, ordenadas por comprimentos de onda decrescentes (ou frequências crescentes), são: vermelho, laranja, amarelo, verde, azul, anil e violeta. A busca por maiores detalhes quanto à radiação solar leva ao Espectro de Fraunhofer.
Os espectros formados a partir de radiações emitidas por corpos incandescentes ou convenientemente excitados são designados por espectros de emissão.
Quando a luz branca passa através de um meio semitransparente, dá-se uma absorção selectiva de radiações de certos comprimentos de onda; o espectro da radiação transmitida designa-se então por espectro de absorção.
Espectro eletromagnético
Os espectros de emissão e de absorção de uma substância são característicos dessa substância, sendo muitas vezes usados para a sua identificação. Tais espectros são o resultado de transições entre diferentes autoestados dos átomos ou moléculas da substância, sendo emitidas ou absorvidas, dinamicamente, ondas electromagnéticas.
A frequência f das radiações emitidas ou absorvidas é dada por 
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


onde E1 e E2 são as energias, respectivamente, dos estados inicial e final entre os quais deu-se a transição, usualmente eletrônica, e h é a constante de Planck. Quando E1 é maior que E2, ondas electromagnéticas (fótons) são emitidas; no caso contrário, fótons são absorvidos.
Espectro contínuo é aquele em que figuram com intensidades não nulas todos os comprimentos de onda presentes na faixa em estudo. As radiações emitida por um corpo negro, a exemplo as emitidas por lâmpadas incandescentes, se decompõem em espectros desta natureza.
Espectro de riscas, também chamados espectros de raias, são, ao contrário, aqueles em que aparecem apenas certos comprimentos de ondas específicos, não havendo energia associada aos demais comprimentos de onda. Espectros oriundos de lâmpadas fluorescentes são desta natureza.

Espectros atômicos[editar | editar código-fonte]

A parte visível do espectro de emissão do hidrogênio (Série de Balmer).
Autovalores de energia e transições esperadas para o átomo de hidrogênio. A Série de Balmer é responsável pela parte do espectro do hidrogênio visível aos olhos humanos, e pela cor característica das lâmpadas de plasma que encerram esse elemento.
Espectros atômicos são espectros de raias. Um dos espectros atômicos mais estudados, entre outros dada a sua importância em áreas como mecânica quânticafísica de plasmasastrofísicaastronomia e cosmologia, é o espectro do hidrogênio, tanto atômico quanto molecular. Quando a estrutura fina é ignorada, os comprimentos de onda para os quais verificam-se amplitudes não nulas ou negligenciáveis (radiação espúria) no espectro do hidrogênio atômico são determináveis por uma relação matemática empírica conhecida como fórmula de Rydberg:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Onde
 e  : série de Lyman (ultravioleta)
 e  : série de Balmer (visível)
 e  : série de Paschen (infravermelho)
 e  : série de Brackett (além do infravermelho)
A análise do átomo de hidrogênio é de suma importância para a compreensão da estrutura da matéria por ser esse o único átomo para o qual se estabelece uma descrição matemática analítica precisa; sendo por esse motivo o modelo escolhido para se introduzir o tratamento quântico da matéria na maioria dos (para não dizer em todos os) livros didáticos acerca do assunto. A solução da Equação de Schrödinger sujeita ao potencial de interação couloumbiano adequado ao átomo fornece por solução autoestados de energia descritos por autofunções e autovalores dos quais se derivam conclusões lógicas em plenitude condizentes com a estrutura espectral e demais dados empiricamente obtidos para o elemento (os autovalores de energia mais importantes, e transições esperadas, são mostrados na figura ao lado).
As autofunções do átomo de hidrogênio estabelecem uma base mediante a qual todos os demais átomos da tabela são, por aproximação, matematicamente descritos; sendo as correspondentes soluções para cada átomo obtidas por técnicas de solução numéricas e não por soluções analíticas, a exemplo via método desenvolvidos por Douglas Hartree (Teoria de Hartree). A partir dos resultados de tal teoria consegue-se então determinar matematicamente as características dos espectros esperados para os demais átomos da tabela periódica.


Em físicacomprimento de onda é a distância entre valores repetidos sucessivos num padrão de onda.[1] É usualmente representado pela letra grega lambda (λ).
Em uma onda senoidal, o comprimento de onda “é a distância (paralela à direção de propagação da onda) entre repetições da forma de onda". Pode, então, ser representada pela distância entre picos (máximos), vales (mínimos), ou duas vezes a distância entre nós.
No gráfico ao lado, o eixo x representa a distância e o eixo y representa alguma quantidade periódica,[2] como por exemplo a pressão, no caso do som ou o campo elétrico para ondas eletromagnéticas ou a altura da água para uma onda no mar profundo. A altura no eixo y é também chamada de amplitude da onda.
O comprimento de onda λ tem uma relação inversa com a frequência[3] f, a velocidade de repetição de qualquer fenômeno periódico. O comprimento de onda é igual à velocidade da onda dividida pela frequência da onda. Quando se lida com radiação electromagnética no vácuo, essa velocidade é igual à velocidade da luz 'c', para sinais (ondas) no ar, essa velocidade é a velocidade na qual a onda viaja.
Essa relação é dada por: [4]
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


em que:
λ = comprimento de onda de uma onda sonora ou onda electromagnética;
c = velocidade da luz no vácuo = 299 792,458 km/s ~ 300 000 km/s = 300 000 000 m/s
f = frequência da onda 1/s = Hz.
A velocidade de uma onda pode portanto ser calculada com a seguinte equação:[5]
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


em que:
v = velocidade da onda.
λ = comprimento de onda de uma onda sonora ou onda electromagnética;
T é o período da onda.
O inverso do período, 1/T, é chamado de frequência da onda, ou frequência de onda:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


e mede o número de ciclos (repetições) por segundo executados pela onda. É medida em hertz (ciclos/segundo).
Para caracterizar uma onda, portanto, é necessário conhecer apenas duas quantidades, a velocidade e o comprimento de onda ou a frequência e a velocidade, já que a terceira quantidade pode ser determinada da equação acima, que podemos reescrever como:[6]
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Quando ondas de luz (e outras ondas electromagnéticas) entram num dado meio, o seu comprimento de onda é reduzido por um factor igual ao índice de refração n do meio, mas a frequência permanece inalterada. O comprimento de onda no meio, λ' é dado por[7]:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


em que:
λ0 é o comprimento de onda no vácuo.


Ondas em cordas[editar | editar código-fonte]

Três primeiros harmônicos em cordas com as extremidades fixas
Ondas estacionárias se formam em instrumentos musicais de cordas, como a guitarra. Nas extremidades, são formados nodos. No primeiro harmônico haverá somente um antinodo, no segundo haverá dois antinodos e assim por diante. A partir disso, concluímos que:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Onde L é o comprimento da corda e n representa o n-ésima harmônica.
Já para cordas com uma das extremidades livre, se formará um nodo na extremidade fixa e um antinodo na extremidade livre. Nesse caso, o comprimento de onda é dado por:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Onde n representa o n-ésima harmônica, não havendo os harmônicos pares nesse sistema.




Fresnel, Maxwell e Young[editar | editar código-fonte]

Representação esquemática do experimento da dupla fenda.
No início do século XIX, os experimentos da fenda dupla, realizada por Young, forneceu argumentos para a teoria ondulatória de Huygens. A experiência da fenda dupla, mostrou que, quando a luz é enviada através de uma rede, uma característica padrão de interferência é observado, muito semelhante ao padrão resultante da interferência de ondas de água; o comprimento de onda da luz pode ser calculado a partir desses padrões. O ponto de vista de onda não substituiu imediatamente a visão corpuscular de Newton, mas foi se estabelecendo gradualmente à comunidade científica durante o século XIX, especialmente através da explicação do fenômeno da polarização da luz, em 1821, por Augustin Fresnel.[3]
No final do século XIX, James Clerk Maxwell explicou luz como é a propagação de ondas eletromagnéticas de acordo com as equações de Maxwell. Essas equações foram verificados experimentalmente por Heinrich Hertz em 1887, e tornou-se a teoria da onda amplamente aceita.

Planck, Einstein e os fótons[editar | editar código-fonte]

Representação esquemática do efeito fotoelétrico.
Em 1905Albert Einstein propôs que a radiação eletromagnética era quantizada, conhecida como fóton. Ele trouxe a ideia de que se a luz é absorvida ou emitida por um corpo, isso irá ocorrer nos átomos do corpo. Quando um fóton de frequência f é absorvido por um átomo, a energia hf do fóton é transferida da luz para o átomo.[4]
No efeito fotoelétrico, quando iluminamos uma superfície de um metal com comprimentos de onda suficientemente pequeno, a luz prova a emissão de elétrons do metal. Através de alguns experimentos, provou-se que o efeito fotoelétrico não depende da intensidade da luz incidente, mas sim de um certo comprimento de onda, chamado de comprimento de onda de corte. Esse resultado não é explicado pela física clássica. A luz, comportando-se como onda eletromagnética teria energia para ejetar elétrons, independente da frequência emitida, porém, isso não é verídico.[4]
Esse fenômeno é facilmente compreendido quando interpretamos a luz em termos de fótons. Os elétrons são mantidos na superfície de um certo material e, para escapar dele, o elétron necessita de uma energia mínima, que depende do que o material é constituído e recebe o nome de função trabalho. Quando a energia hf cedida por um fóton a um elétron é maior que a função trabalho do material, este elétron poderá escapar do alvo.
Einstein foi premiado com o Prêmio Nobel de Física em 1921 pela explicação teórica do efeito fotoelétrico.

Louis de Broglie e as ondas de matéria[editar | editar código-fonte]

Imagem da difração de elétrons produzida em um microscópio eletrônico de transmissão.
A dualidade partícula-onda foi enunciada pela primeira vez em 1924, pelo físico francês Louis-Victor de Broglie, que anunciou que os elétrons apresentavam características tanto ondulatórias como corpusculares, comportando-se de um ou outro modo dependendo do experimento específico. A experiência de Young (experiência da dupla fenda) exemplifica de maneira sensível o comportamento ondulatório do elétron; e pelo que já se conhecia do mesmo como partícula - a citarem-se os experimentos realizados com o tubo de Crookes, e outros - concluiu-se a dualidade onda-partícula deste ente, visto que a difração em fenda dupla é uma propriedade notoriamente ondulatória.[1]
De Broglie fundou seu raciocínio inicialmente na intuição e nos conhecimentos acerca do efeito fotoelétrico para chegar a esta conclusão. Durante os estudos de Albert Einstein acerca do efeito fotoelétrico - estudos que lhe renderam o prêmio Nobel - ele havia concluído que os fótons que atuavam no efeito fotoelétrico exibiam todas as propriedades esperadas de um feixe de partículas, comportando-se cada qual como uma partícula com energia E=h•f, onde f representa a frequência da onda eletromagnética associada aos fótons em consideração. Einstein concluiu desta forma que, em determinados processos, as ondas se comportam como se fossem corpúsculos. De Broglie imaginou então o inverso, ou seja, se ondas se comportam como partículas, porque não esperar que partículas se comportem como ondas? Levando sua ideia a cabo e confrontando-a com dados empíricos o físico francês foi capaz de relacionar com sucesso o comprimento de onda associado ao comportamento ondulatório da "partícula" com sua massa mediante a fórmula λ=h/p, onde p representa o módulo do vetor quantidade de movimento, ou seja, o produto da massa pelo módulo da velocidade (m•v) do ente; h representa a Constante de Planck, e λ é o comprimento de onda associado.[1]
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Observando-se a fórmula verifica-se facilmente que, à medida que a massa ou sua velocidade aumenta, diminui-se consideravelmente o comprimento de onda. Os corpos macroscópicos têm associada uma onda, porém sua massa é tão grande que pode-se afirmar que apresentam um comprimento de onda desprezível, porém não nulo. Embora no mundo macroscópico tais efeitos ondulatórios sejam por tal imperceptíveis, no mundo subatômico estes certamente não o são, e por tal, na hora de se falar sobre "partículas" atômicas é muito importante se considerar a dualidade - já que o comportamento ondulatório determinado pelo comprimento de onda que possuem é a única forma de se explicar muitos de seus fenômenos.